MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design of a fail-safe wearable robot with novel extendable arms for ergonomic accommodation during floor work

Author(s)
Hahm, Katie S.(Katie Soyoung)
Thumbnail
Download1117714452-MIT.pdf (4.833Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
H. Harry Asada.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Aircraft manufacturing, construction, and agricultural production often involve workers maintaining uncomfortable postures, such as stooping and kneeling, for extended periods of time. We present a wearable robot, named MantisBot Alpha, that consists of two expandable robotic arms that brace a worker near the ground. It allows them to perform bi-manual tasks and assists them in standing up and kneeling down. The key component of this new design is a novel linkage mechanism that provides adjustment of both the worker's distance to the ground and the tilt of their torso. The mechanism link parameters are optimized such that a) its expansion rate is high enough, 1:2.43, to push off the human body from the ground and fully contract the scissor arm when not used, and b) it allows the worker to reach within a larger working space while c) it is light enough for wearability. The linkage mechanism avoids the singularity problem in standard scissor mechanisms. The mechanical design of the system ensures it is fail-safe. A prototype has been fabricated to demonstrate the feasibility of the system. Keywords: Human Augmentation, Supernumerary Robotic Limbs, Exoskeletons, Mechanism Design, Industrial Robotics
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 53-54).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/122144
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.