MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Growth and characterizations of two-dimensional metal-organic frameworks

Author(s)
Ha, Dong-Gwang.
Thumbnail
Download1117715015-MIT.pdf (16.47Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Materials Science and Engineering.
Advisor
Marc A. Baldo.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Metal-Organic Frameworks (MOFs) are a class of porous materials with a crystalline structure that can be designed based on extremely tunable building blocks of organic molecules and metal ions. They are typically insulators but making them [pi]-conjugated with two-dimensional structure results in high electrical conductivity. This makes the two-dimensional a-conjugated MOFs (2D [pi]MOFs) good candidates for applications that need porous conductors such as supercapacitors and batteries. More importantly, tunability of the crystal structure enables us to explore exotic physical properties, including topological protection. This great potential has inspired the synthesis of various 2D [pi]MOFs, but their crystal growth remains challenging, preventing the characterization of intrinsic electrical properties. In this thesis, I will explain the growth mechanisms of 2D [pi]MOFs and the limitations of conventional growth methods.
 
Based on the analysis, I developed a novel growth method that generates single-crystal plates of a 2D [pi]MOF, Ni₃(HHTP)₂ (HHTP= 2,3,6,7,10,11 hexahydroxytriphenylene), over 10 [mu]m in lateral dimension, two orders of magnitude larger than previous reports. The growth mechanism of the new method is also studied by varying multiple growth parameters. The properties of the single crystals are characterized by various spectroscopic techniques. Among assorted characteristics, the electrical properties are explored closely. The large single-crystal plates enable us to study in-plane properties of a 2D [pi]MOF for the first time. The in-plane conductivity of Ni₃(HHTP)₂ is up to 2 S/cm, two orders of magnitude higher than pressed pellet, and shows a clear temperature dependence. Hall measurements reveal that the origin of the high conductivity is a high charge carrier density rather than high charge carrier mobility.
 
We anticipate our demonstration will facilitate the discovery of fundamental properties of various 2D [pi]MOFs and further our realization of their potential as electronic materials.
 
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 123-132).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/122155
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.