Show simple item record

dc.contributor.advisorWei Zhang.en_US
dc.contributor.authorXiao, Jingwei,Ph.D.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mathematics.en_US
dc.date.accessioned2019-09-16T22:34:39Z
dc.date.available2019-09-16T22:34:39Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/122178
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 85-87).en_US
dc.description.abstractIn this thesis, we study the germ expansions in the Jacquet-Rallis transfer. We prove an identity that relates certain nilpotent orbital integrals for any smooth matching in this transfer. We give two applications of this identity. For the first, we give an elementary local proof of the endoscopic fundamental lemma for unitary groups (theorem of Laumon and Ngo). For the second, we establish a new relative trace formula comparison conjectured by Jacquet that can be used to study unitary periods.en_US
dc.description.statementofresponsibilityby Jingwei Xiao.en_US
dc.format.extent87 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMathematics.en_US
dc.titleGerm expansion, endoscopic transfer, and unitary periodsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.identifier.oclc1117775396en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Mathematicsen_US
dspace.imported2019-09-16T22:34:36Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentMathen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record