Show simple item record

dc.contributor.advisorAlexei Borodin.en_US
dc.contributor.authorCuenca, Cesar(Cesar A.)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mathematics.en_US
dc.date.accessioned2019-09-16T22:35:26Z
dc.date.available2019-09-16T22:35:26Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/122190
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 191-195).en_US
dc.description.abstractThere are two parts to this thesis. In the first part we compute the correlation functions of the 4-parameter family of BC type Z-measures. The result is given explicitly in terms of Gauss's hypergeometric function. The BC type Z-measures are point processes on the punctured positive real line. They arise as interpolations of the spectral measures of a distinguished family of spherical representations of certain infinite-dimensional symmetric spaces. In representation-theoretic terms, our result solves the problem of noncommutative harmonic for the aforementioned family of representations. The second part of the text is based on joint work with Grigori Olshanski. We consider a new 5-parameter family of probability measures on the space of infinite point configurations of a discrete lattice. One of the 5 parameters is a quantization parameter and the measures in the family are closely related to the BC type Z-measures. We prove that the new measures serve as orthogonality weights for symmetric function analogues of the multivariate q-Racah polynomials. Further we show that the q-Racah symmetric functions (and their corresponding orthogonality measures) can be degenerated into symmetric function analogues of the big q-Jacobi, q-Meixner and Al-Salam-Carlitz polynomials, thus giving rise to a partial q-Askey scheme hierarchy in the algebra of symmetric functions.en_US
dc.description.statementofresponsibilityby Cesar Cuenca.en_US
dc.format.extent195 pages ;en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMathematics.en_US
dc.titlePoint processes of representation theoretic originen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.identifier.oclc1117774519en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Mathematicsen_US
dspace.imported2019-09-16T22:35:23Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentMathen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record