Show simple item record

dc.contributor.advisorElsa Olivetti.en_US
dc.contributor.authorDennison, Joshua E.(Joshua Elliot)en_US
dc.contributor.otherMassachusetts Institute of Technology. Institute for Data, Systems, and Society.en_US
dc.contributor.otherTechnology and Policy Program.en_US
dc.coverage.spatiala-ii---en_US
dc.date.accessioned2019-09-16T22:35:38Z
dc.date.available2019-09-16T22:35:38Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/122192
dc.descriptionThesis: S.M. in Technology and Policy, Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 49-53).en_US
dc.description.abstractIndia's soaring population elicits increased demand for construction materials and waste generation. Incumbent materials such as the fired clay brick demand high energy manufacturing processes and pose serious environmental and human health hazards. Separately, the landfilling and illegal disposal of industrial waste is unsustainable and growing rapidly along with population. To address both of these issues, we have developed a brick composed of 90% industrial waste that is superior to a traditional fired clay brick in environmental impact and comparable in cost while meeting the physical properties that structural code mandates. By transforming industrial waste into sustainable building materials through alkali-activation, we propose a solution to help alleviate the environmental, ecological, and human health impacts of India's housing crisis. Surge in material use leads not only to environmental impact from processing, manufacturing, and transportation, but also imposes an ecological burden via extraction of raw materials. This ecological deterioration can be accounted for by imputing values for the unmarketed values of ecosystem services--benefits to humans derived from working ecosystems--and captured in the material's price. This thesis looks at the life cycle impact of the novel alkali-activated masonry and traditional building materials, and also conducts an ecosystem service valuation to shed light on hidden ecological costs associated with material extraction. In concert with the technical analysis, this thesis proposes a framework to streamline the acknowledgment of environmental services into policy which could assist in ousting incumbent materials and the environmental harm associated with their development. Dormant potential lying in landfills can become an active solution to the region's population problem.en_US
dc.description.statementofresponsibilityby Joshua E. Dennison.en_US
dc.format.extent53 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectInstitute for Data, Systems, and Society.en_US
dc.subjectTechnology and Policy Program.en_US
dc.titleBuilding nature conservation : masonry from alkali-activated industrial waste & the economics of ecosystem servicesen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Technology and Policyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.contributor.departmentTechnology and Policy Programen_US
dc.identifier.oclc1117774454en_US
dc.description.collectionS.M.inTechnologyandPolicy Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Societyen_US
dspace.imported2019-09-16T22:35:35Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentESDen_US
mit.thesis.departmentIDSSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record