Show simple item record

dc.contributor.advisorJacqueline A. Lees.en_US
dc.contributor.authorHagen, Hannah R.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Biology.en_US
dc.date.accessioned2019-09-17T16:29:34Z
dc.date.available2019-09-17T16:29:34Z
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/122205
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Biology, 2019en_US
dc.descriptionCataloged from PDF version of thesis. "May 2019."en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractUveal melanoma (UM) is a cancer of eye melanocytes that has a particularly poor prognosis and a dearth of treatment options. In contrast to cutaneous melanoma (CM), which is driven by oncogenic mutation of BRAF or NRAS, UM is driven by oncogenic mutations in GNAQ or GNA11 (>80% of patients). We developed a zebrafish model of UM by expressing GNAQ[superscript Q209L] in the melanocytes of p53-/- zebrafish. In this model, oncogenic GNAQ activates biological programs involved in pigmentation and tumorigenesis. The melanocyte lineage transcription factor MITF plays a well-defined role in CM tumorigenesis, wherein MITF expression is absolutely necessary for tumorigenesis and regulates proliferative versus invasive tumor phenotypes. In contrast, here we elucidated a novel tumor suppressor function for MITF in UM. In the context of oncogenic GNAQ, loss of mitfa accelerates tumorigenesis and reduces tumor reliance on p53 mutation.en_US
dc.description.abstractExpression of oncogenic GNAQ can also overcome mitfa-/- tumor inhibition in BRAF-driven CM. Moreover, mitfa's tumor suppressive role is generalizable to UM and mitfa-/- accelerates tumorigenesis driven by oncogenic GNA11 or CYSLTR2, a GNAQ/11 upstream receptor. Interestingly, we show that GNAQ directly regulates pigment programs, as evidenced by hyperpigmentation patches that develop even in the absence of mitfa. Furthermore, the pigmentation and tumorigenesis phenotypes are decoupled, suggesting differential regulation of these programs downstream of oncogenic GNAQ. The observation that mitfa has different roles in CM vs UM led us to investigate the different signaling mechanisms of BRAF- vs GNAQ-driven melanoma. Oncogenic GNAQ activates the downstream pathways YAP and PLC[beta], and there is conflicting evidence implicating the relative importance of these two signaling axes in driving UM tumorigenesis. Here, we outline a central role for YAP for in in vivo UM tumorigenesis.en_US
dc.description.abstractConstitutively active YAP[superscript S127A;S381A] drives rapid UM tumorigenesis, furthermore, YAP staining was ubiquitous across UM tumors. Finally, we show here for the first time that PLCB4D630Y was sufficient to drive tumors at long latency. Together, these findings clarify the genetic pathways that drive UM formation.en_US
dc.description.statementofresponsibilityby Hannah R. Hagen.en_US
dc.format.extent183 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiology.en_US
dc.titleA GNAQ/11-driven zebrafish cancer model identifies MITF and YAP as key determinants for uveal melanomaen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.identifier.oclc1117709509en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Biologyen_US
dspace.imported2019-09-17T16:29:32Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentBioen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record