MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust design via geometric and signomial programming

Author(s)
Saab, Ali.
Thumbnail
Download1103712637-MIT.pdf (5.452Mb)
Other Contributors
Massachusetts Institute of Technology. Computation for Design and Optimization Program.
Advisor
Karen Willcox.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Solving convex optimization problems has become extremely efficient and reliable after the recent development of polynomial-time algorithms and advancement in computing power. Geometric Programming (GP) and Signomial Programming (SP) has been proven successful in optimizing multidisciplinary designs due to exploiting the speed of convergence and the ability to model non-linear designs. However, an optimal solution of GPs and SPs can be sensitive to uncertainties in the parameters involved in the problem. In fact, robust optimization can incorporate the uncertainties in an optimization problem and solves for the worst-case scenario. Yet, robust geometric programs (RGPs) and robust signomial programs (RSPs) are not known to have a tractable formulation that current solvers can efficiently solve. In this thesis, approximate formulations of RGPs and RSPs are proposed. Recently, the curiosity regarding the deployment of GPs and SPs in model complex engineering systems has been growing. This awareness has motivated modeling the uncertainties that are fundamental to engineering design optimization. Consequently, RGPs and RSPs provide a framework for modeling and solving GPs and SPs while representing their ambiguities as belonging to an uncertainty set. The RGP methodologies presented here are based on reformulating the GP as a convex program and then robustifying it with methods from robust linear programming. The RSP methodology is based on solving sequential local RGP approximations. These new methodologies, along with previous ones from the literature, are used to robustify aircraft design problems, and the results of these different methodologies are compared and discussed.
Description
Thesis: S.M., Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2018
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 79-81).
 
Date issued
2018
URI
https://hdl.handle.net/1721.1/122319
Department
Massachusetts Institute of Technology. Computation for Design and Optimization Program
Publisher
Massachusetts Institute of Technology
Keywords
Computation for Design and Optimization Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.