Show simple item record

dc.contributor.advisorR. John Hansman.en_US
dc.contributor.authorMathesius, Kelly J.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2019-10-04T21:30:47Z
dc.date.available2019-10-04T21:30:47Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/122377
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 97-100).en_US
dc.description.abstractA gap exists in the design space for aircraft mass and speed: no flight vehicles with a mass of less than 10 kg and speed greater than 100 m/s are available. The small, fast "Firefly" flight vehicle is being developed to explore the capabilities and challenges for aircraft in this gap. The compact Firefly aircraft is configured around a long-endurance, end-burning solid rocket motor that provides 2-3 minutes of powered flight. Challenges exist for manufacturing solid rocket motors for small, fast aircraft such as Firefly. Achieving desired motor performance requires a void-free propellant grain and thermal liner and a strong propellant-to-liner bond. However, observations and tests following several motor manufacturing attempts have revealed voids in the propellant and liner and delamination at the propellant-to-liner interface. Manufacturing defects such as these have led to large increases in chamber pressure and thrust during a static fire test of a motor. This thesis describes the development and implementation of manufacturing methods for slow-burning, long-endurance motors used in small, fast aircraft. Innovative tooling and rigorous procedures have been developed to help ensure the consistent production of a long-endurance solid rocket motor. Successful static firings of a test motor validate the effectiveness of many of the developed manufacturing methods.en_US
dc.description.statementofresponsibilityby Kelly J. Mathesius.en_US
dc.format.extent106 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleManufacturing methods for a solid rocket motor propelling a small, fast flight vehicleen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.identifier.oclc1119731383en_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Aeronautics and Astronauticsen_US
dspace.imported2019-10-04T21:30:47Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentAeroen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record