Show simple item record

dc.contributor.advisorPatrick Jaillet and Dimitris Bertsimas.en_US
dc.contributor.authorMartin, Sébastienen_US
dc.contributor.otherMassachusetts Institute of Technology. Operations Research Center.en_US
dc.coverage.spatialn-us---n-us-man-us-nyen_US
dc.date.accessioned2019-10-04T21:31:38Z
dc.date.available2019-10-04T21:31:38Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/122388
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 273-284).en_US
dc.description.abstractThis thesis focuses on impactful applications of large-scale optimization in transportation and machine learning. Using both theory and computational experiments, we introduce novel optimization algorithms to overcome the tractability issues that arise in real world applications. We work towards the implementation of these algorithms, through software contributions, public policy work, and a formal study of machine learning interpretability. Our implementation in Boston Public Schools generates millions of dollars in yearly transportation savings and led to important public policy consequences in the United States. This work is motivated by large-scale transportation problems that present significant optimization challenges. In particular, we study the problem of ride-sharing, the online routing of hundreds of thousands of customers every day in New York City.en_US
dc.description.abstractWe also contribute to travel time estimation from origin-destination data, on city routing networks with tens of thousands of roads. We additionally consider the problem of school transportation, the scheduling of hundreds of buses to send tens of thousands of children to school everyday. This transportation problem is related to the choice of school start times, for which we also propose an optimization framework. Building on these applications, we present methodological contributions in large- scale optimization. We introduce state-of-the-art algorithms for scheduling problems with time-window (backbone) and for school bus routing (BiRD). Our work on travel time estimation tractably produces solutions to the inverse shortest path length problem, solving a sequence of second order cone problems. We also present a theoretical and empirical study of the stochastic proximal point algorithm, an alternative to stochastic gradient methods (the de-facto algorithm for large-scale learning).en_US
dc.description.abstractWe also aim at the implementation of these algorithms, through software contributions, public policy work (together with stakeholders and journalists), and a collaboration with the city of Boston. Explaining complex algorithms to decision-makers is a difficult task, therefore we introduce an optimization framework to decomposes models into a sequence of simple building blocks. This allows us to introduce formal measure of the "interpretability" of a large class of machine learning models, and to study tradeoffs between this measure and model performance, the price of interpretability.en_US
dc.description.statementofresponsibilityby Sébastien Martin.en_US
dc.format.extent284 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectOperations Research Center.en_US
dc.titleThe edge of large-scale optimization in transportation and machine learningen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.contributor.departmentSloan School of Management
dc.identifier.oclc1120105488en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Sloan School of Management, Operations Research Centeren_US
dspace.imported2019-10-04T21:31:36Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentSloanen_US
mit.thesis.departmentOperResen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record