MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Aeronautics and Astronautics
  • Aeronautics and Astronautics - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Aeronautics and Astronautics
  • Aeronautics and Astronautics - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

CO₂ emissions reduction potential of aviation biofuels in the US

Author(s)
Galligan, Timothy R.
Thumbnail
Download1119721615-MIT.pdf (4.717Mb)
Alternative title
Carbon dioxide emissions reduction potential of aviation biofuels in the US
Other Contributors
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics.
Advisor
Steven R. H. Barrett.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Aviation biofuels derived from biomass and wastes have been identified as a means to reduce carbon dioxide (CO₂) emissions from US aviation, but the magnitude of the possible reduction has not been quantified. This scenario-based analysis quantifies the life cycle greenhouse gas (GHG) mitigation potential of aviation biofuels in 2050 within the US. Projected arable land availability, growth in agricultural yields, and the availability of wastes and residues are estimated as a function of future economic and climate patterns, and variability is accounted for. Under a baseline set of assumptions, the use of aviation biofuels results in a maximum reduction of 163 Tg of CO₂ equivalent (CO₂e) in 2050, a 42% reduction in life cycle GHG emissions compared to petroleum-derived jet fuel. Across all scenarios assessed, the reduction in life cycle GHGs ranges from 47.0 to 207 Tg CO₂e (12-53%), requiring the use of fuels derived from wastes, agriculture and forestry residues, and cultivated energy crops. Using only fuels derived from residues and wastes, up to 35% of US jet fuel demand could be met, corresponding to a 28% reduction of CO₂e. The results are most sensitive to assumptions on the distribution of fuel products, and agricultural residue availability.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2018
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 55-60).
 
Date issued
2018
URI
https://hdl.handle.net/1721.1/122397
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Aeronautics and Astronautics - Master's degree
  • Aeronautics and Astronautics - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.