Show simple item record

dc.contributor.advisorEytan Modiano.en_US
dc.contributor.authorLiu, Bai(Aerospace scientist)Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2019-10-04T21:33:15Z
dc.date.available2019-10-04T21:33:15Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/122414
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 59-91).en_US
dc.description.abstractWith the rapid growth of information technology, network systems have become increasingly complex. In particular, designing network control policies requires knowledge of underlying network dynamics, which are often unknown, and need to be learned. Existing reinforcement learning methods such as Q-Learning, Actor-Critic, etc. are heuristic and do not offer performance guarantees. In contrast, model-based learning methods offer performance guarantees, but can only be applied with bounded state spaces. In the thesis, we propose to use model-based reinforcement learning. By applying Lyapunov analysis, our algorithm can be applied to queueing networks with unbounded state spaces. We prove that under our algorithm, the average queue backlog can get arbitrarily close to the optimal result. We also implement simulations to illustrate the effectiveness of our algorithm.en_US
dc.description.statementofresponsibilityby Bai Liu.en_US
dc.format.extent61 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleReinforcement learning in network controlen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.identifier.oclc1119730914en_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Aeronautics and Astronauticsen_US
dspace.imported2019-10-04T21:33:13Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentAeroen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record