Show simple item record

dc.contributor.advisorJohn P. Thomas.en_US
dc.contributor.authorOdajima, Ryo,S.M.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Engineering and Management Program.en_US
dc.contributor.otherSystem Design and Management Program.en_US
dc.date.accessioned2019-10-04T21:34:20Z
dc.date.available2019-10-04T21:34:20Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/122433
dc.descriptionThesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, System Design and Management Program, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 269-277).en_US
dc.description.abstractHigh-speed rail (HSR) has improved dramatically since its launch in 1964 in terms of its technical aspects such as speed and reliability, thanks to technical developments including the automation of the train operation. At the same time, safety has become an increasingly critical aspect as the severity of the accidents has become much more severe. Although the automation and newly developed software might have decreased the number of accidents that would not have been prevented without them, they also have introduced new types of hazards and accidents that did not exist before due to the increased level of complexity of the whole system. These hazards include system design errors, component interactions accidents, or software-related errors due to the increased number of interfaces and coordination among internal and external stakeholders and higher dependency on automation and software.en_US
dc.description.abstractThus eliminating component failures should not be the only design consideration or priority, and more consideration should be given to eliminating coordination or design errors that would not be solved by redundancy for the sake of reliability improvement. This thesis mainly focuses on analyzing the past accidents caused by systematic failures and provides recommendations and considerations for designing and operating highly automated complex safety-critical railway systems. Often, the accident analysis finishes once someone is found to be responsible, but this thesis focuses on figuring out why they behaved that way by using the STAMP framework, which is based on systems theory, documenting the systemic factors which contributed to the accidents. The analysis thus looks into not only physical systems but also organizational aspects, such as management, organization culture, and other social-technical aspects.en_US
dc.description.abstractTwo accident analyses revealed causal factors on every level of the organization, including policy makers, audit authority, management, human operators and engineers, physical systems, and so on. In addition, the analyses provide the conceptual explanation of how the systems migrate into an unsafe state over time. The set of knowledge learned through the analyses is summarized as 35 lessons learned. These lessons are of use for future considerations in designing highly-automated safety-critical railway systems and their organization.en_US
dc.description.statementofresponsibilityby Ryo Odajima.en_US
dc.format.extent277 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering and Management Program.en_US
dc.subjectSystem Design and Management Program.en_US
dc.titleDesigning highly automated safety-critical railway system and its organizationen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Engineering and Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering and Management Programen_US
dc.identifier.oclc1120721284en_US
dc.description.collectionS.M.inEngineeringandManagement Massachusetts Institute of Technology, System Design and Management Programen_US
dspace.imported2019-10-04T21:34:19Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentSysDesen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record