dc.contributor.advisor | Paulo Lozano. | en_US |
dc.contributor.author | Jia-Richards, Oliver. | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Aeronautics and Astronautics. | en_US |
dc.date.accessioned | 2019-10-11T20:21:52Z | |
dc.date.available | 2019-10-11T20:21:52Z | |
dc.date.copyright | 2019 | en_US |
dc.date.issued | 2019 | en_US |
dc.description | This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. | en_US |
dc.description | Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2019 | en_US |
dc.description | Cataloged from student-submitted PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 147-149). | en_US |
dc.description.abstract | The standardization of small spacecraft through CubeSats has allowed for more affordable space exploration. This progress in affordability has been limited to Earth orbit due in part to the lack of high [delta]V propulsion systems that are compatible with the small form factor. The ion Electrospray Propulsion System developed at the Space Propulsion Laboratory at the Massachusetts Institute of Technology is a promising technology foundation for a compact, high [delta]V propulsion system. However, the [delta]V output of the propulsion system is limited by the lifetime of individual electrospray thrusters. This thesis presents the design and analysis of a stage-based concept for the ion Electrospray Propulsion System where the propulsion system is composed of a stack of electrospray thruster arrays. The stage-based propulsion system bypasses the lifetime limit of individual electrospray thrusters in order to increase the lifetime of the entire propulsion system. In effect, propulsion capabilities for CubeSats can be advanced without the need for technological developments. With the current performance metrics of the ion Electrospray Propulsion System, deep-space missions with an initial spacecraft form factor of a 3U CubeSat are feasible with current propulsion technology. Mechanisms required for the stage-based system are designed and demonstrated in a vacuum environment. In addition, analytical methodologies for the analysis of stage-based propulsion systems are developed to assist in preliminary mission design as well as provide the framework for autonomous decision making. Finally, applications of a stage-based propulsion system for missions to near-Earth asteroids are explored as well as analytical guidance for the escape trajectory. | en_US |
dc.description.sponsorship | NASA Space Technology Mission Directorate through the Small Spacecraft Technology Programgrant 80NSSC18M0045 | en_US |
dc.description.sponsorship | NASA Space Technology Research Fellowshipgrant 80NSSC18K1186 | en_US |
dc.description.statementofresponsibility | by Oliver Jia-Richards. | en_US |
dc.format.extent | 149 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Aeronautics and Astronautics. | en_US |
dc.title | Design and analysis of a stage-based electrospray propulsion system for CubeSats | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Aeronautics and Astronautics | en_US |
dc.identifier.oclc | 1121263553 | en_US |
dc.description.collection | S.M. Massachusetts Institute of Technology, Department of Aeronautics and Astronautics | en_US |
dspace.imported | 2019-10-11T21:37:05Z | en_US |