MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Trade space assessment of electrified commercial aircraft

Author(s)
Gonzalez, Jonas J.
Thumbnail
Download1121198612-MIT.pdf (8.741Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics.
Advisor
Edward M. Greitzer.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis assesses the performance benefit of electrified propulsion systems for commercial aircraft entering production in a 2035 timeframe. The propulsive power reduction from boundary layer ingestion (BLI), a technology that could be enhanced by electrification, is characterized and bounded by power balance analysis. An aircraft system model extends this analysis to capture the weight and performance trades of electrified architectures, as defined by propulsion system configuration, technology level, and mission. The model quantifies the impact of such architectures on mission energy via optimized aircraft designs. It is found that the propulsive power of a representative narrow-body jet is reduced by 28% with ideal ingestion of the entire boundary layer. Distributed, boundary layer ingesting, turbo-electric aircraft configurations are found to minimize energy consumption for all the missions examined from 500 to 6000 nmi. Energy reductions up to 27% relative to a non-BLI, non-electric, twin-turbofan design are possible. Advanced non-electric aircraft configurations are also examined and found to achieve similar reductions (up to 24%) with fuselage BLI. A parametric characterization of the trade space of electrified configurations illustrates the benefit of a turbo-electric architecture for all the technology levels and missions examined and the limitation of all-electric architecture to mission ranges less than 300 nmi, even with optimistic technology levels.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 105-106).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/122503
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.