Show simple item record

dc.contributor.advisorJonathan P. How.en_US
dc.contributor.authorDraper, Brandon J.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2019-10-11T21:53:36Z
dc.date.available2019-10-11T21:53:36Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/122504
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 85-87).en_US
dc.description.abstractMonocular pose estimation is a well-studied aspect of computer vision with a wide array of applications, including camera calibration, autonomous navigation, object pose tracking, augmented reality, and numerous other areas. However, some unexplored areas of camera pose estimation remain academically interesting. This thesis provides a detailed description of the system hardware and software that permits operation in one application area in particular: long-range, precise monocular pose estimation in feature-starved environments. The novel approach to pose extraction uses special hardware, including active LED features and a bandpass-interference optical filter, to significantly simplify the image processing step of the Perspective-n-Point (PnP) problem. The PnP problem describes the calculation of pose from n extracted image points corresponding to n known 3D world points. The proposed application method operates in tandem with a tethered unmanned aerial vehicle (UAV) and mobile ground control station (GCS). The integrated localization and flight system serves as a platform for future U.S. Navy air flow research. Indoor tests at the RAVEN flight space of MIT's Aerospace Controls Lab and outdoor tests at a grass strip runway demonstrate the system's efficacy in providing an accurate and precise pose estimate of the UAV relative to the mobile GCS.en_US
dc.description.sponsorship"Sources of funding for the project and my educational pursuits at MIT: Creare, LLC., the Small Business Technology Transfer (STTR), and the Office of Naval Research"--Page 5en_US
dc.description.statementofresponsibilityby Brandon J. Draper.en_US
dc.format.extent87 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleLong-range outdoor monocular localization with active features for ship air wake measurementen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.identifier.oclc1121198620en_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Aeronautics and Astronauticsen_US
dspace.imported2019-10-11T21:53:35Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentAeroen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record