MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Self-assembly of lead-halide-perovskite laser particles

Author(s)
Cho, Sangyeon,Ph. D.Massachusetts Institute of Technology.
Thumbnail
Download1121596094-MIT.pdf (25.39Mb)
Other Contributors
Harvard--MIT Program in Health Sciences and Technology.
Advisor
Seok Hyun (Andy) Yun.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
As profiling the molecular states of cellular subpopulations has become increasingly important to understand complex systems in biology and medicine, considerable efforts are being made to develop multiplexed techniques. While current fluorescent probes play indispensable roles, their broad emission spectra (about 30-100 nm) limit multiplexing capability. Recently, optical probes emitting narrowband laser spectra (about 0.1-1 nm), called 'laser particles', has drawn attention. Semiconductor microdisk lasers fabricated by top-down lithography have shown potential for massive multiplexing of thousands to millions of samples. In the thesis, I investigated lead halide perovskites (LHP) as a novel material for scalable production of laser particles in a lab flask. I discovered a sonochemical method to produce a large quantity (10 billions/L) of high-quality LHP micro- and sub-micron particles in a polar solvent within minutes. This method enabled me to coat the surface of individual CsPbBr3 laser particles using poly-catecholamine and thereby to improve optical properties and material stability against moisture. With CsPbBr3 microparticles coated with nano-scatterers, I realized disordered lasing based on Anderson localization. In addition, by incorporating plasmonic materials, I demonstrated plasmonic-lasing particles as small as 580 nm. This work paves the way for highly multiplexable laser particles for biomedical applications.
Description
Thesis: Ph. D., Harvard-MIT Program in Health Sciences and Technology, 2019
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/122536
Department
Harvard--MIT Program in Health Sciences and Technology; Harvard University--MIT Division of Health Sciences and Technology
Publisher
Massachusetts Institute of Technology
Keywords
Harvard--MIT Program in Health Sciences and Technology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.