MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Closed loop supply chain waste reduction through predictive modelling and process analysis

Author(s)
Kobor, Hans P.
Thumbnail
Download1119387906-MIT.pdf (9.390Mb)
Other Contributors
Sloan School of Management.
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Leaders for Global Operations Program.
Advisor
Duane Boning and Juan Pablo Vielma.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Verizon distributes Customer Premises Equipment (CPE) such as set top boxes, broadband routers, and WiFi extenders to Fios customers via a variety of paths; for example: direct ship to customer (either for self-install or for later installation by a field technician), delivery via field technicians, or retail store pickup (primarily for self-install). Each method has its own benefits and shortcomings due to impacts on metrics such as inventory levels, shipping costs, on-time delivery, and system complexity. Although the majority of shipments are successfully activated in the customer's home, a non-trivial percentage results in unused returns or inventory shrinkage. These undesirable results represent a significant amount of wasted resources. This thesis is focused on identifying and realizing cost savings in the Fios supply chain through reduction in waste associated with unsuccessful shipments.
 
In order to effectively analyze the closed-loop supply chain, accurate and reliable process mapping is critical. Interviews with key stakeholders, together with order and shipment data analysis yielded a complete picture of the ecosystem's processes and infrastructure. Process mining techniques augmented this understanding, using event log data to identify and map equipment and information flows across the supply chain. All together this analysis is used to identify order cancellations as a key source of waste. To limit waste, it is necessary to conduct analysis both internal to Verizon's processes and externally, to determine if there are customer trends leading to order termination. Process mining was used for the internal analysis and, while it helped identify singular cases in which process abnormalities were associated with undesirable outcomes, its current form proved unsuited for root cause analysis.
 
Internal analysis did, however, illuminate opportunities for improvement in radio-frequency identification (RFID) usage and protocols across the supply chain. Current systems can result in poor visibility of equipment as it moves within some segments of the supply chain. The actual monetary impact is difficult to determine but likely to increase as the importance of RFID increases. External analysis is conducted through predictive modelling. Using a variety of data sources, a model with over 80% sensitivity and a low false positive rate is achieved. Operationalizing this model through real time incorporation with sales was explored but found to be overly complex. Instead, the random forest model yielded policy changes guided by the features with the highest importance. A pilot is currently in development to test the efficacy of suggested changes, as the model implies significant savings opportunity.
 
Description
Thesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, 2019, In conjunction with the Leaders for Global Operations Program at MIT
 
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019, In conjunction with the Leaders for Global Operations Program at MIT
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 59-60).
 
Date issued
2019
2019
URI
https://hdl.handle.net/1721.1/122573
Department
Sloan School of Management; Massachusetts Institute of Technology. Department of Mechanical Engineering; Leaders for Global Operations Program
Publisher
Massachusetts Institute of Technology
Keywords
Sloan School of Management., Mechanical Engineering., Leaders for Global Operations Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.