Show simple item record

dc.contributor.advisorRoy Welsch and Daniel Frey.en_US
dc.contributor.authorCasavant, Matt(Matt Stephen)en_US
dc.contributor.otherSloan School of Management.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2019-10-11T22:25:10Z
dc.date.available2019-10-11T22:25:10Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/122595
dc.descriptionThesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, 2019, In conjunction with the Leaders for Global Operations Program at MITen_US
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019, In conjunction with the Leaders for Global Operations Program at MITen_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 59-60).en_US
dc.description.abstractIncreasing competition in the defense industry risks contract margin degradation and increases the need for new avenues to margin expansion. One such area of opportunity is take-away bids for under-performing competitor sole source contracts. Post financial crisis, the government has been more willing to entertain conversation with outside firms about existing contracts in the execution phase if the contracted firm is under performing budgetary and schedule terms. The contracted firm has the opportunity to defend its performance though, so in order to maximize the likelihood of successful take-away, the bid would ideally be submitted when the contracted firm is distracted and cannot put together as strong of a defense as would be typical. Corporate restructuring is an example of such a time; employees are distracted and leadership, communication, and approval chains are disrupted. Because the government contracting process is long and detailed, often taking on the order of one year, if restructuring at competitor firms could be predicted up to a year in advance, resources could be shifted ahead of time to align bid submittal with the public restructuring announcement and therefore increase the likelihood of take-away success. The subject of this thesis is the development of the necessary dataset and application of various machine learning methods to predict future restructuring. Literature review emphasizes understanding of current methods benefits and shortcomings in relation to forecasting, and proposed methods seeks to fill in gaps. Depending on the competitor, the resulting models predict future restructuring on blind historical test set data with an accuracy of 80-90%. While blind historical test set data are not necessarily indicative of future data, one of the firm's under assessment recently announced a future restructuring in the same quarter that the model predicted.en_US
dc.description.statementofresponsibilityby Matt Casavant.en_US
dc.format.extent60 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectMechanical Engineering.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titlePredicting competitor restructuring using machine learning methodsen_US
dc.typeThesisen_US
dc.description.degreeM.B.A.en_US
dc.description.degreeS.M.en_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentLeaders for Global Operations Programen_US
dc.identifier.oclc1119537667en_US
dc.description.collectionM.B.A. Massachusetts Institute of Technology, Sloan School of Managementen_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Mechanical Engineeringen_US
dspace.imported2019-10-11T22:25:10Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentSloanen_US
mit.thesis.departmentMechEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record