MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Chemistry
  • Chemistry - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Chemistry
  • Chemistry - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structural modeling of dynamic polymer networks

Author(s)
Alt, Eric Allen.
Thumbnail
Download1123218287-MIT.pdf (14.60Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemistry.
Advisor
Adam P. Willard.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Polymer network based gels are an important class of materials with a wide range of applications. Dynamic polymer networks, which crosslink via the formation of reversible bonds, in particular have great potential as stimuli responsive, mechanically tunable, and self-healing materials. Many important emergent properties of these materials, such as mechanical strength, are mediated by their underlying network structure, which can be characterized by the network topology and spatial distribution of nodes. Therefore, unlocking the full potential of these materials through rational design requires an understanding of how network structure arises as a function of network-forming precursor design. Because the bonds that crosslink dynamic polymer networks are reversible, stresses initially present or otherwise induced in these systems can be relieved through network rearrangement. As such, given sufficient time to relax, the network structure is determined by equilibrium thermodynamics.
 
This work presents a thermodynamic formalism which characterizes the free energy of a network in terms of node positional, network topological, and polymer conformational entropies. Through this lens, and aided by numerical calculations and simulations of model networks, we show how the free energy landscape with respect to density relates to factors which can be readily controlled through precursor design, such as polymer length and node size. Additionally, Monte Carlo simulations of explicit networks reveal that thermodynamic relaxation can give rise to spatial heterogeneity in the arrangement of network nodes. In the last chapter we use the tools developed in the earlier chapters to explore how these same design parameters influence the topological statistics of equilibrium networks. In addition to showing how internode connectivity increases with polymer length and system density, we find that inhomogeneity due to spatial relaxation can also lead to greater network connectivity.
 
Finally, we explore the weakening of network topologies due to substitution of polymer-linked node forming components with topologically non-functional counterparts, finding that larger nodes fare better than their smaller counterparts in maintaining network connectivity when these substitutions are made.
 
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 125-131).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/122711
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Chemistry - Ph.D. / Sc.D.
  • Chemistry - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.