MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data-driven path filtering in ConceptNet

Author(s)
Zhou, Yilun(Computer scientist)Massachusetts Institute of Technology.
Thumbnail
Download1124679389-MIT.pdf (2.887Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Julie A. Shah.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In many applications, it is important to characterize the way in which two concepts are semantically related. Knowledge graphs such as ConceptNet provide a rich source of information for such characterizations by encoding relations between concepts as edges in a graph. When two concepts are not directly connected by an edge, their relationship can still be described in terms of the paths that connect them. Unfortunately, many of these paths are uninformative and noisy, meaning that the success of applications that use such path features crucially relies on their ability to select high-quality paths. In existing applications, this path selection process is based on relatively simple heuristics. In this thesis I instead propose to learn to predict path quality from crowdsourced human assessments. Since a generic task-independent notion of quality is concerned, human participants are asked to rank paths according to their subjective assessment of the paths' naturalness, without being given specific definitions or guidelines. Experiments show that a neural network model trained on these assessments is able to predict human judgments on unseen paths with near optimal performance. Most notably, the resulting path selection method is substantially better than the current heuristic approaches at identifying meaningful paths in various applications.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 49-52).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/122731
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.