MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exact geometry algorithms for robotic motion planning

Author(s)
Deshpande, Ashwin.
Thumbnail
Download1124682409-MIT.pdf (12.73Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Tomás Lozano-Pérez and Leslie P. Kaelbling.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The current generation of robotic motion planning algorithms is dominated by derivatives of the PRM and RRT algorithms. These methods abstract away all geometric information about the underlying problem into a collision checker. While this approach yields simple and general purpose algorithms, it often comes at the cost of theoretical guarantees and performance. In this thesis, we explore deterministic motion planning algorithms that have explicit knowledge of the geometry of the underlying problems. By exploiting this geometry, we give algorithms that can achieve stronger theoretical guarantees and better performance in some problems. This thesis is divided into two main sections comprising of two different motion planning scenarios. In the first case, we explore issues of decidability in task and motion planning by giving a decision procedure for prehensile task and motion planning. In the second section, we present a holonomic motion planning algorithm that can almost always identify the exact optimal solution as a system of differential equations, which can be numerically solved to produce an asymptotically-optimal solution.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 103-113).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/122736
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.