MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The relationship between actions and significance of email

Author(s)
Alrashed, Tarfah Abdullah.
Thumbnail
Download1124852502-MIT.pdf (3.686Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
David R. Karger.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Email remains a critical channel for communicating information in both personal and work accounts. The number of emails people receive every day can be overwhelming, which in turn creates challenges for efficient information management and consumption. Having a good estimate of the significance of emails forms the foundation for many downstream tasks (e.g. email prioritization); but determining significance at scale is expensive and challenging. In this thesis, we hypothesize that the cumulative set of actions on any individual email can be considered as a proxy for the perceived significance of that email. We propose two approaches to summarize observed actions on emails, which we then evaluate against the perceived significance. The first approach is a fixed-form utility function parameterized on a set of weights, and we study the impact of different weight assignment strategies. In the second approach, we build machine learning models to capture users' significance directly based on the observed actions. For evaluation, we collect human judgments on email significance for both personal and work emails. Our analysis suggests that there is a positive correlation between actions and significance of emails and that actions performed on personal and work emails are different. We also find that the degree of correlation varies across people, which may reflect the individualized nature of email activity patterns or significance. Subsequently, we develop an example of real-time email significance prediction by using action summaries as implicit feedback at scale. Evaluation results suggest that the resulting significance predictions have positive agreement with human assessments, albeit not at statistically strong levels. We speculate that we may require personalized significance prediction to improve agreement levels.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 51-53).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/122748
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.