dc.contributor.advisor | Dirk Robert Englund. | en_US |
dc.contributor.author | Chakraborty, Uttara,S.M.Massachusetts Institute of Technology. | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2019-11-04T20:22:34Z | |
dc.date.available | 2019-11-04T20:22:34Z | |
dc.date.copyright | 2019 | en_US |
dc.date.issued | 2019 | en_US |
dc.identifier.uri | https://hdl.handle.net/1721.1/122753 | |
dc.description | Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019 | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 60-69). | en_US |
dc.description.abstract | Silicon photonics is a highly-promising platform for on-chip quantum information processing. Linear optical quantum computing architectures necessitate the implementation of integrated single photon sources, passive and active optics, and single photon detectors. This thesis presents the development of a scalable, real-time feedback control protocol for stabilizing microring resonator frequencies in parallel with quantum computation using the same classical pump laser fields as are used to seed photon generation. The feedback protocol is applied to correct static and dynamic errors in silicon microring resonators due to fabrication variations and ambient fluctuations, and to demonstrate high-visibility two-photon quantum interference with photon pairs generated by spontaneous four wave mixing. Progress on a new interferometrically-coupled photon generation device for four-photon quantum interference is also presented. Finally, a new scheme is proposed for non-volatile phase shifters in large-scale photonic integrated circuits. The potential use of shape-memory materials for straining silicon waveguides to induce refractive index shifts is explored through finite-element simulations. | en_US |
dc.description.sponsorship | "Supported by my NDSEG Fellowship" | en_US |
dc.description.statementofresponsibility | by Uttara Chakraborty. | en_US |
dc.format.extent | 69 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Towards integrated silicon photonic architectures for quantum information processing | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.identifier.oclc | 1124855547 | en_US |
dc.description.collection | S.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science | en_US |
dspace.imported | 2019-11-04T20:22:33Z | en_US |
mit.thesis.degree | Master | en_US |
mit.thesis.department | EECS | en_US |