MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A graph-based framework for information extraction

Author(s)
Qian, Yujie (Computer scientist)
Thumbnail
Download1124957696-MIT.pdf (2.982Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Regina Barzilay.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Most modern Information Extraction (IE) systems are implemented as sequential taggers and only model local dependencies. Non-local and non-sequential context is, however, a valuable source of information to improve predictions. In this thesis, we introduce a graph-based framework (GraphIE) that operates over a graph representing a broad set of dependencies between textual units (i.e. words or sentences). The algorithm propagates information between connected nodes through graph convolutions, generating a richer representation that can be exploited to improve word-level predictions. Evaluation on three different tasks -- namely textual, social media and visual information extraction -- shows that GraphlE consistently outperforms the state-of-the-art sequence tagging model by a significant margin.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 43-45).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/122765
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.