Show simple item record

dc.contributor.advisorEugene Demler.en_US
dc.contributor.authorSeetharam, Kushal.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2019-11-04T20:23:22Z
dc.date.available2019-11-04T20:23:22Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/122769
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 30-31).en_US
dc.description.abstractWe study the behavior of a finite-momentum impurity immersed in a weakly interacting Bose-Einstein condensate (BEC) of ultra-cold atoms near an interspecies Feshbach resonance. Using the time-dependent variational approach, we study both ground state properties and quench dynamics of the system after a sudden immersion of the impurity into the BEC. We find evidence of a ground state phase transition when the impurity has a velocity greater than that of the sound velocity (Landau critical velocity) associated with Bogoliubov quasiparticle excitations of the BEC. As we cross from the subsonic regime to the supersonic regime, we get a breakdown of the polaron quasiparticle description of the system, emission of Cherenkov phonons, and a sound-like dispersion of the system. This phase transition manifests in several ways during real-time dynamics of the system and showcases a rich interplay between polaronic physics and Cherenkov physics. One key signature, dissipation in the the supersonic regime, can be seen in experimental protocols where the impurity and BEC are made to move relative to each other through an external force. We suggest one such experimental protocol to measure the polaron's effective mass as long as the impurities are subsonic. While the measurement scheme becomes error-prone due to dissipation when the impurities are allowed to become supersonic, this sensitivity suggests a way to experimentally probe the Cherenkov physics of supersonic impurities immersed in a BEC.en_US
dc.description.statementofresponsibilityby Kushal Seetharam.en_US
dc.format.extent31 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleDynamics of finite momentum Bose polaronsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1124958155en_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2019-11-04T20:23:21Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record