MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Imperfect gaps in Gap-ETH and PCPs

Author(s)
Vyas, Nikhil,S.M.Massachusetts Institute of Technology.
Thumbnail
Download1125006408-MIT.pdf (1.812Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Richard Ryan Williams.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis we study the role of perfect completeness in probabilistically checkable proof systems (PCPs) and give a new way to transform a PCP with imperfect completeness to a PCP with perfect completeness, when the initial gap is a constant. In particular, we show that PCP[subscript c,s][r, q] [mathematical symbol] PCP[subscript 1,s'][r + 0(1), q+ 0 (r)] for c - s = [omega](1) which in turn implies that one can convert imperfect completeness to perfect in linear-sized PCPs for NTIME[0(n)] with a 0(log n) additive loss in the query complexity q. We show our result by constructing a "robust circuit" using threshold gates. These results are a gap amplification procedure for PCPs (when completeness is imperfect), analogous to questions studied in parallel repetition [21] and pseudorandomness [141. We also investigate the time complexity of approximating perfectly satisfiable instances of 3SAT versus those with imperfect completeness. We show that the Gap-ETH conjecture without perfect completeness is equivalent to Gap-ETH with perfect completeness; that is, MAX 3SAT(1 - [epsilon], 1 - [delta]) for [delta] > [epsilon] has 2⁰([superscript n])-time algorithms if and only if MAX 3SAT(1, 1 - [delta]) has 2⁰([superscript n])-time algorithms. We also relate the time complexities of these two problems in a more fine-grained way, to show that T₂ (n) </= T₁ (n(log log n)⁰(¹)), where T₁(n), T₂(n) denote the randomized time-complexity of approximating MAX 3SAT with perfect and imperfect completeness, respectively. This is joint work with Mitali Bafna.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 45-47).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/122771
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Master's degree
  • Electrical Engineering and Computer Sciences - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.