MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Copper-catalyzed carbon-heteroatom bond formations : asymmetric hydroamination and continuous-flow aromatic Finkelstein reaction

Author(s)
Ichikawa, Saki.
Thumbnail
Download1126315674-MIT.pdf (39.27Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemistry.
Advisor
Stephen L. Buchwald.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The studies presented in this dissertation are regarding the development of new methods for copper-catalyzed carbon-heteroatom bond formations, including asymmetric hydroamination and continuous-flow aromatic Finkelstein reaction. The first part of this dissertation focuses on the development of copper-catalyzed asymmetric hydroamination reactions to access various classes of enantioenriched amines. This includes the development of a broadly applicable hydroamination protocol for the synthesis of enantioenriched N-arylamines (Chapter 1) and 1,2- diamines (Chapter 2). The second part of this dissertation describes the development of copper-catalyzed aromatic Finkelstein reaction under continuous-flow conditions (Chapter 3). Part I. Chapter 1.
 
A Modified System for the Synthesis of Enantioenriched N-Arylamines through Copper-Catalyzed Hydroamination Despite significant recent progress in copper-catalyzed enantioselective hydroamination chemistry, the synthesis of chiral N-arylamines, which are frequently found in natural products and pharmaceuticals, has not been realized. Initial experiments with N-arylhydroxylamine ester electrophiles were unsuccessful and instead, their reduction, in the presence of copper hydride (CuH) catalysts, was observed. We detail key modifications of our previously reported hydroamination protocols that led to broadly applicable conditions for the enantioselective net addition of secondary anilines across the double bond of styrenes, 1,1 -disubstituted alkenes, and terminal alkenes. NMR studies suggest that suppression of the undesired reduction pathway is the basis for the dramatic improvements in yield under this new protocol. Chapter 2.
 
Regio- and Enantioselective Synthesis of 1,2-Diamine Derivatives by Copper- Catalyzed Hydroamination A highly regio- and enantioselective synthesis of 1,2-diamines using [gamma]-substituted allylic pivalamides via copper-catalyzed hydroamination is reported. The N-pivaloyl group is essential, both in facilitating the hydrocupration step and in suppressing the unproductive [beta]-elimination from the alkylcopper intermediate. This synthetic approach enables an efficient construction of chiral, differentially protected, vicinal diamines under mild conditions with broad functional group tolerance. Part II. Chapter 3. Rapid and Efficient Copper-Catalyzed Finkelstein Reaction of (Hetero)Aromatics under Continuous-Flow Conditions A general, rapid, and efficient method for the copper-catalyzed Finkelstein reaction of (hetero)aromatics has been developed using continuous flow to generate a variety of aryl iodides.
 
The described method can tolerate a broad range of functional groups, including N-H and O-H groups. Additionally, in lieu of isolation, the aryl iodide products in solution can be directly used in two distinct multistep continuous-flow processes (amidation or Mg-I exchange/nucleophilic addition) to demonstrate the flexibility of this method.
 
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/122852
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.