dc.contributor.advisor | Aleksander Madry. | en_US |
dc.contributor.author | Zhang, Jeffrey,M. Eng.Massachusetts Institute of Technology. | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2019-11-22T00:00:46Z | |
dc.date.available | 2019-11-22T00:00:46Z | |
dc.date.copyright | 2019 | en_US |
dc.date.issued | 2019 | en_US |
dc.identifier.uri | https://hdl.handle.net/1721.1/122994 | |
dc.description | This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. | en_US |
dc.description | Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019 | en_US |
dc.description | Cataloged from student-submitted PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 57-58). | en_US |
dc.description.abstract | Logit-based regularization and pretrain-then-tune are two approaches that have recently been shown to enhance adversarial robustness of machine learning models. In the realm of regularization, Zhang et al. (2019) proposed TRADES, a logit-based regularization optimization function that has been shown to improve upon the robust optimization framework developed by Madry et al. (2018) [14, 9]. They were able to achieve state-of-the-art adversarial accuracy on CIFAR10. In the realm of pretrain- then-tune models, Hendrycks el al. (2019) demonstrated that adversarially pretraining a model on ImageNet then adversarially tuning on CIFAR10 greatly improves the adversarial robustness of machine learning models. In this work, we propose Adversarial Regularization, another logit-based regularization optimization framework that surpasses TRADES in adversarial generalization. Furthermore, we explore the impact of trying different types of adversarial training on the pretrain-then-tune paradigm. | en_US |
dc.description.statementofresponsibility | by Jeffry Zhang. | en_US |
dc.format.extent | 58 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Enhancing adversarial robustness of deep neural networks | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M. Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.identifier.oclc | 1127291827 | en_US |
dc.description.collection | M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science | en_US |
dspace.imported | 2019-11-22T00:00:45Z | en_US |
mit.thesis.degree | Master | en_US |
mit.thesis.department | EECS | en_US |