MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Understanding the landscape of adversarial robustness

Author(s)
Engstrom, Logan(Logan G.)
Thumbnail
Download1127640126-MIT.pdf (15.32Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Aleksander Mądry.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Despite their performance on standard tasks in computer vision, natural language processing and voice recognition, state-of-the-art models are pervasively vulnerable to adversarial examples. Adversarial examples are inputs that have been slightly perturbed--such that the semantic content is the same--as to cause malicious behavior in a classifier. The study of adversarial robustness has so far largely focused on perturbations bound in l[subscript p]-norms, in the case where the attacker knows the full model and controls exactly what input is sent to the classifier. However, this threat model is unrealistic in many respects. Models are vulnerable to classes of slight perturbations that are not captured by l[subscript p] bounds, adversaries realistically often will not have full model access, and in the physical world it is not possible to exactly control what image is sent to the classifier. In our exploration we successfully develop new algorithms and frameworks for exploiting vulnerabilities even in restricted threat models. We find that models are highly vulnerable to adversarial examples in these more realistic threat models, highlighting the necessity of further research to attain models that are truly robust and reliable.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 108-115).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/123021
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.