MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Large-scale acoustic scene analysis with deep residual networks

Author(s)
Ford, Logan H.
Thumbnail
Download1127649352-MIT.pdf (8.314Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
James Glass and Hao Tang.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Many of the recent advances in audio event detection, particularly on the AudioSet dataset, have focused on improving performance using the released embeddings produced by a pre-trained model. In this work, we instead study the task of training a multi-label event classifier directly from the audio recordings of AudioSet. Using the audio recordings, not only are we able to reproduce results from prior work, we have also confirmed improvements of other proposed additions, such as an attention module. Moreover, by training the embedding network jointly with the additions, we achieve a mean Average Precision (mAP) of 0.392 and an area under ROC curve (AUC) of 0.971, surpassing the state-of-the-art without transfer learning from a large dataset. We also analyze the output activations of the network and find that the models are able to localize audio events when a finer time resolution is needed. In addition, we use this model in exploring multimodal learning, transfer learning, and realtime sound event detection tasks.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 63-66).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/123026
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.