Show simple item record

dc.contributor.advisorRichard R. Fletcher.en_US
dc.contributor.authorOlubeko, Olasubomi O.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2019-11-22T00:03:49Z
dc.date.available2019-11-22T00:03:49Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/123039
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 71-74).en_US
dc.description.abstractMillions of people around the globe die or are severely burdened every year at the hands of infections. These infections can occur in wounds on the surface of the body, often after surgery. They also occur inside the body as a result of hazardous contact with infectious pathogens. Many of the victims of infections reside in developing countries and have little access to proper diagnostic resources. As a result, a large portion of these infection victims go without diagnosis until the effects of the infection are severely life-threatening. My research group has focused on developing tools to aid in disease screening for patients in developing areas over the past seven years. For this thesis project, I developed a Logistic Regression model that screens for infections in surgical site wounds using features extracted from visible light images of the wounds. The extracted features convey information about the texture and color of the wound in the LAB color space.en_US
dc.description.abstractThis model was able to achieve nearly perfect classification results on a testing set of 143 patients who were part of a clinical study conducted on C-section patients at clinical facilities in rural Rwanda. Given the outstanding results of this model, our group is looking to incorporate it in a mobile screening application for surgical site infections that is currently being developed. I also built a framework for extracting features to be used in diagnosing infectious pulmonary diseases from thermal images of patients' faces. The extracted features capture information about temperature statistics in different regions of the face. This framework was tested on a small group of patients who participated in a study being conducted by our partners at the NIH. To test the framework, I used the features it extracted from each image as input for a Logistic Regression classifier that predicted whether or not the image subject had an infectious pulmonary disease.en_US
dc.description.abstractThis model achieved an average accuracy of 87.10% and AUC of 0.8125 on a testing set of 32 thermal facial images. These results seem motivating as a preliminary assessment of the power of the extracted thermal features. We plan on expanding the framework to utilize the features with more advanced models and larger datasets once the workers in the study have been able to screen more patients. Finally, I conducted an experiment analyzing gender and socioeconomic bias that may be present in previous models used by our group to screen patients for pulmonary diseases (COPD, asthma, and AR). The experiment observed the effects of training a model on a set of patients that is demographically skewed towards a majority group on the model's testing performance on patients of all groups (majority, minority, and all patients).en_US
dc.description.abstractThis experiment uncovered no significant biases in a model trained and evaluated on datasets of patients screened in previous and current studies conducted by partners of our group. These results were positive, but our group is still interested in finding additional ways to ensure that data collected for our research does not encode unwanted biases against members of any demographic groups that our tools may be utilized by.en_US
dc.description.statementofresponsibilityby Olasubomi O. Olubeko.en_US
dc.format.extentvii, 74 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleMachine learning models for screening and diagnosis of infectionsen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1127828735en_US
dc.description.collectionM.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2019-11-22T00:03:48Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record