MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Emulsification, separation, and manipulation of oil-water systems using condensation, electrocoalescence, and electrowetting

Author(s)
Guha, Ingrid Fuller.
Thumbnail
Download1127289813-MIT.pdf (6.384Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Kripa K. Varanasi.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis explores the emulsification, separation, and manipulation of oil/water mixtures using a range of chemical, mechanical, and electrical techniques. Simply explained, this thesis reports new methods to emulsify oil and water using condensation, separate oil and water using low-voltage electrocoalescence, and manipulate oil and water using ultra low-voltage electrowetting. The emulsification method relies on condensation of one liquid phase onto another. As nanoscale droplets of water condense onto the surface of oil, they are submerged and stabilized in the oil by a surfactant in the oil phase. The concentration of surfactant and time of condensation determine the size and stability of the resulting emulsions. The separation method presented in this thesis redesigns the configuration of the standard electrocoalescence setup and the dielectric materials used. The design employs a surface configuration in place of a bulk configuration for electrocoalescence.
 
Additionally, a high-K dielectric (hafnium oxide) is used in place of a hydrophobic low-K dielectric (e.g. a fluoropolymer). A thermodynamically stable nanoscale oil film-a lipid bilayer-forms on the surface of the hafnium oxide, effectively rendering the surface hydrophobic by buffering water drops from the surface and preventing pinning. This surface configuration coupled with the use of a high-K dielectric drastically reduces the voltage required to induce electrocoalescence. The method of manipulating oil and water presented in this thesis is the electrowetting of a water drop on bare silicon in an oil environment containing zwitterions. The zwitterions form a nanoscale lipid bilayer between the water drop and the silicon surface. This electrowetting system contains no deposited solid dielectrics, resulting in ultra low-voltage actuation of the electrowetting effect.
 
This thesis presents the theory, experimental results, and discussion of the experimental results for each method of controlling water/oil mixtures.
 
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 53-60).
 
Date issued
2018
URI
https://hdl.handle.net/1721.1/123056
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.