Show simple item record

dc.contributor.advisorDarrell J. Irvine and K. Dane Wittrup.en_US
dc.contributor.authorMehta, Naveen K.,Ph.D.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Biological Engineering.en_US
dc.date.accessioned2019-11-22T00:09:22Z
dc.date.available2019-11-22T00:09:22Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/123065
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Biological Engineering, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 171-181).en_US
dc.description.abstractVaccination against infectious diseases has long been heralded as one of the greatest advancements in public health, yet its application to other clinical indications has fallen short of expectations. In this thesis, we apply engineering principles to develop more potent vaccines in the treatment of cancer and autoimmunity. Both major components of molecular vaccines, antigen and adjuvant, are independently explored as a part of this work. Our antigen studies sought to improve the delivery of peptide epitopes to lymphoid organs by fusing epitopes to inert protein carriers with defined pharmacokinetic properties. To promote anti-tumor immunity, we found that antigen carriers should 1) protect peptide cargo from proteolytic degradation, 2) be appropriately bulky to drain into the lymphatics, and 3) be rapidly cleared once in the blood to prevent tolerization at distal poorly inflamed organs.en_US
dc.description.abstractApplying these principles, we identified transthyretin as an optimal delivery protein, and demonstrated efficacy against a number of clinically relevant antigens. Because our protein-epitope fusion approach is fully recombinant in nature, we were able to convert our protein vaccines into nucleic acid modalities, including plasmid DNA and self-replicating RNA, which are significantly easier and cheaper to manufacture at scale. Finally, we applied our learnings to purposefully induce tolerization in the treatment of autoimmunity, and found that albumin is a particularly efficacious antigen carrier protein for this application due to its extended half-life. On the adjuvant front, we attempted to engineer novel Toll-like receptor 3 (TLR3) agonists via yeast surface display. Although we successfully developed high affinity TLR3 binders, all tested clones failed to agonize TLR3 despite the utilization of several multimerization strategies.en_US
dc.description.abstractSeparately, in an effort to better understand adjuvant biology, we conducted a detailed mechanistic study of lipo-CpG, a particularly potent amphiphilic CpG variant previously developed by the Irvine lab. We uncovered a cascade of inflammatory signals originating from monocytes that facilitates the induction of high magnitude T cell responses, largely by acting in trans rather than directly on the antigen-presenting cell. Overall, these studies have elucidated a number of design principles that should aid in the engineering of next generation vaccines to better treat cancer and autoimmunity.en_US
dc.description.statementofresponsibilityby Naveen K. Mehta.en_US
dc.format.extent181 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiological Engineering.en_US
dc.titleEngineering more potent vaccines for the treatment of cancer and autoimmunityen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.identifier.oclc1127291776en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Biological Engineeringen_US
dspace.imported2019-11-22T00:09:21Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentBioEngen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record