MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dolgopyat’s method and the fractal uncertainty principle

Author(s)
Dyatlov, Semyon; Jin, Long
Thumbnail
DownloadAccepted version (572.2Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We show a fractal uncertainty principle with exponent 1/2-δ+ε, ε > 0, for Ahlfors-David regular subsets of ℝ of dimension δ ∈ (0,1). This is an improvement over the volume bound 1/2-δ, and ε is estimated explicitly in terms of the regularity constant of the set. The proof uses a version of techniques originating in the works of Dolgopyat, Naud, and Stoyanov on spectral radii of transfer operators. Here the group invariance of the set is replaced by its fractal structure. As an application, we quantify the result of Naud on spectral gaps for convex cocompact hyperbolic surfaces and obtain a new spectral gap for open quantum baker maps.
Date issued
2018-05
URI
https://hdl.handle.net/1721.1/123104
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Analysis & PDE
Publisher
Mathematical Sciences Publishers
Citation
Dyatlov, Semyon and Long Jin. "Dolgopyat's method and the fractal uncertainty principle." Analysis & PDE 11, 6 (May 2018): 1457-1485 © 2018 Mathematical Sciences Publishers
Version: Author's final manuscript
ISSN
1948-206X
2157-5045

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.