Show simple item record

dc.contributor.authorDyatlov, Semyon
dc.contributor.authorJin, Long
dc.date.accessioned2019-12-03T18:59:39Z
dc.date.available2019-12-03T18:59:39Z
dc.date.issued2018-05
dc.date.submitted2017-10
dc.identifier.issn1948-206X
dc.identifier.issn2157-5045
dc.identifier.urihttps://hdl.handle.net/1721.1/123104
dc.description.abstractWe show a fractal uncertainty principle with exponent 1/2-δ+ε, ε > 0, for Ahlfors-David regular subsets of ℝ of dimension δ ∈ (0,1). This is an improvement over the volume bound 1/2-δ, and ε is estimated explicitly in terms of the regularity constant of the set. The proof uses a version of techniques originating in the works of Dolgopyat, Naud, and Stoyanov on spectral radii of transfer operators. Here the group invariance of the set is replaced by its fractal structure. As an application, we quantify the result of Naud on spectral gaps for convex cocompact hyperbolic surfaces and obtain a new spectral gap for open quantum baker maps.en_US
dc.language.isoen
dc.publisherMathematical Sciences Publishersen_US
dc.relation.isversionofhttp://dx.doi.org/10.2140/APDE.2018.11.1457en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleDolgopyat’s method and the fractal uncertainty principleen_US
dc.typeArticleen_US
dc.identifier.citationDyatlov, Semyon and Long Jin. "Dolgopyat's method and the fractal uncertainty principle." Analysis & PDE 11, 6 (May 2018): 1457-1485 © 2018 Mathematical Sciences Publishersen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalAnalysis & PDEen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-11-12T16:07:55Z
dspace.date.submission2019-11-12T16:07:59Z
mit.journal.volume11en_US
mit.journal.issue6en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record