Show simple item record

dc.contributor.advisorManolis Kellis.en_US
dc.contributor.authorShady, Maha,M. Eng.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2019-12-05T18:05:56Z
dc.date.available2019-12-05T18:05:56Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/123145
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: M. Eng. in Computer Science and Molecular Biology, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 61-64).en_US
dc.description.abstractWith the advancements in next-generation sequencing technologies, there is an unprecedented amount of tumor genomic and transcriptomic data available for research. This data availability opens the door for using data-driven techniques to identify biomarkers that can provide useful information about a patient's tumor, such as progression risk and potential sensitivity to treatment. Given the heterogeneity of the disease, the availability of such patient-specific information to clinicians will enable personalized care and improve clinical outcomes. In this thesis we utilize gene expression data from The Cancer Genome Atlas to identify prognostic biomarkers and predictors of potential response to immunotherapy in lung adenocarcinoma (LUAD) and metastatic skin cutaneous melanoma (SKCM). We utilize various statistical and machine learning techniques in the identification of such biomarker genes, and we analyze the final candidate genes for their utility in characterizing the immune response to the tumor and in stratifying patients by survival time. For both LUAD and SKCM we identified genes which can be reliable predictors of patient survival and whose enrichment correlates with immune cell abundance in the tumor micro-environment, specifically with CD4 and CD8 T-cells, and macrophages. We also found that some of the genes we identified represent known cancer hallmarks. Finally, a subset of the genes we identified have been shown to be predictive of response to immunotherapy in melanoma patients in a previous study. These results show that the identified genes may have biological and clinical significance in the context of cancer. Furthermore, the methodology we used to identify those biomarkers was not dependent on any disease-specific information, and can be adjusted for utility in other cancer types or even other diseases.en_US
dc.description.statementofresponsibilityby Maha Shady.en_US
dc.format.extent64 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleIdentifying prognostic biomarkers for cancer using gene expression dataen_US
dc.typeThesisen_US
dc.description.degreeM. Eng. in Computer Science and Molecular Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1128830219en_US
dc.description.collectionM.Eng.inComputerScienceandMolecularBiology Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2019-12-05T18:05:55Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record