dc.contributor.advisor | Joshua Tenenbaum and Max Kleiman-Weiner. | en_US |
dc.contributor.author | Serrino, Jack Samuel. | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2019-12-05T18:06:03Z | |
dc.date.available | 2019-12-05T18:06:03Z | |
dc.date.copyright | 2019 | en_US |
dc.date.issued | 2019 | en_US |
dc.identifier.uri | https://hdl.handle.net/1721.1/123147 | |
dc.description | This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. | en_US |
dc.description | Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019 | en_US |
dc.description | Cataloged from student-submitted PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 39-43). | en_US |
dc.description.abstract | Recent breakthroughs in AI for multi-agent games like Go, Poker, and Dota, have seen great strides in recent years. Yet none of these AI systems address a key game mechanism in hidden role games. Here we develop the DeepRole algorithm, a multiagent reinforcement learning agent that we test on The Resistance: Avalon, the most popular hidden role game. DeepRole combines counterfactual regret minimization (CFR) with deep value networks trained through self-play. Our algorithm integrates deductive reasoning into vector-form CFR to reason about joint beliefs and deduce partially observable actions. We augment deep value networks with constraints that yield interpretable representations of win probabilities. Empirical game-theoretic methods show that DeepRole outperforms other hand-crafted and learned agents in five-player Avalon. DeepRole played with and against human players on the web in hybrid human-agent teams. We find that DeepRole outperforms human players as both a cooperator and a competitor. | en_US |
dc.description.statementofresponsibility | by Jack Samuel Serrino. | en_US |
dc.format.extent | 58 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Finding friend and foe in Avalon with counterfactual regret minimization and deep networks | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M. Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.identifier.oclc | 1128830334 | en_US |
dc.description.collection | M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science | en_US |
dspace.imported | 2019-12-05T18:06:02Z | en_US |
mit.thesis.degree | Master | en_US |
mit.thesis.department | EECS | en_US |