MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic detection of code-switching in Arabic dialects

Author(s)
Rivera, Gabrielle Cristina.
Thumbnail
Download1128868510-MIT.pdf (2.321Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
James Glass and Suwon Shon.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Multilingual and multidialectal speakers commonly switch between languages and dialects while speaking, leading to the linguistic phenomenon known as code-switching. Most acoustic systems, such as automatic speech recognition systems, are unable to robustly handle input with unexpected language or dialect switching. Generally, this results from both a lack of available corpora and an increase in the difficulty of the task when applied to code-switching data. This thesis focuses on constructing an acoustic-based model to gather code-switching information from utterances containing Modern Standard Arabic and dialectal Arabic. We utilize the multidialectal GALE Arabic dataset to classify the code-switching style of an utterance and later to detect the location of code-switching within an utterance. We discuss the failed classification schemes and detection methods, providing analysis for why these approaches were unsuccessful. We also present an alignment-free classification scheme which is able to detect locations within an utterance where dialectal Arabic is likely being spoken. This method presents a marked improvement over the proposed baseline in average detection miss rate. By utilizing this information, Arabic acoustic systems will be more robust to dialectal shifts within a given input.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 61-65).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/123151
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.