Show simple item record

dc.contributor.advisorMichael Siegel.en_US
dc.contributor.authorReilly, Elizabeth(Elizabeth C.), M. Eng.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2019-12-05T18:06:24Z
dc.date.available2019-12-05T18:06:24Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/123154
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: M. Eng. in Computer Science and Engineering, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 55-57).en_US
dc.description.abstractThe use of IoT devices in smart cities, advanced energy delivery systems, manufacturing plants and transportation systems is rapidly increasing. These systems are often responsible for communicating critical data about infrastructure and system state. Despite the significance of IoT devices, many of these devices lack communication protocols with data integrity as a priority. Without data integrity, these systems become reliant on compromised data, and ultimately fail. Attackers can use these vulnerabilities to wage cyber-physical attacks. The light client is an integrity-first communication protocol for IoT devices based on the Ethereum blockchain. This light client ensures that data is not compromised and is lightweight, at a total memory consumption size of 1.2 MB. Therefore, this light client is distributed, secure, and light enough to fit on many IoT devices and ensure that integrity is maintained where it is needed most [24].en_US
dc.description.statementofresponsibilityby Elizabeth Reilly.en_US
dc.format.extent57 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAn ethereum-based, integrity-first communication protocol for IoT devicesen_US
dc.typeThesisen_US
dc.description.degreeM. Eng. in Computer Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1128870098en_US
dc.description.collectionM.Eng.inComputerScienceandEngineering Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2019-12-05T18:06:23Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record