MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High-performance intent classification in sparse supervised data conditions

Author(s)
Galli, Keith(Keith R.)
Thumbnail
Download1128822757-MIT.pdf (5.616Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
James Glass and Ken Leidal.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Intent recognition is the process of taking short messages, called utterances, and automatically classifying them as a specific intent from a set of possible intents. A model is trained using a number of sample utterances from each intent with the goal of being able to classify unseen utterances with high accuracy. The objective of this work is to build an intent recognition tool for chatbots that outperforms all other natural language understanding services available. In order to do this, we first created a corpus that could be used to test models in a wide variety of different conditions. Next we performed a comprehensive review of possible models by looking at relevant work in natural language processing and applying these techniques to intent recognition. Finally we present the Shallow Attention Extension that builds off of state-of-the-art language models to produce an intent recognition model with deep semantic understanding of English phrases. This model exhibits very high performance in a large set of different testing environments.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 59-62).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/123200
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.