Show simple item record

dc.contributor.advisorH. Harry Asada.en_US
dc.contributor.authorYan, Tongxi,S.M.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2019-12-13T18:53:49Z
dc.date.available2019-12-13T18:53:49Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/123241
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (page 47).en_US
dc.description.abstractA novel design of extendable robotic arm inspired by plant growth is presented. The robot can construct its own body structure by converting a type of fluidized material into a rigid structure at its growing point. It extends its structure in multiple directions, and move through a winding space to reach a point, which is otherwise difficult to access. The robot with the rigid structure can also bear a more significant load than existing growing robot, has a plate to attach an end-effector, and can transport an object. The robot satisfies three key functional requirements that are characteristic to plant growth. First, the robot is capable of transporting structural materials to its growing point. Second, the robot is capable of transforming the material into a rigid structure. Third, it is capable of steering its growing point so that it extends in a desired direction. A proof-of-concept prototype is then presented that consists of a customized chain that can be switched between fluidized and rigid states, a winch that can transport the chain, and a steering system to direct the growing direction. The prototype meets all the functional requirements by moving along a path and retract to the starting position. What follows this prototype is the second design that solves some issues found in the first design. Details of major changes from the initial design are presented and is validated in a virtual environment.en_US
dc.description.statementofresponsibilityby Tongxi Yan.en_US
dc.format.extent47 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleExtendable robot inspired By plant growthen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.identifier.oclc1130059217en_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Mechanical Engineeringen_US
dspace.imported2019-12-13T18:53:48Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentMechEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record