A joule heating mechanism for high-speed fused filament fabrication
Author(s)
Daguilh, Thad.
Download1130061543-MIT.pdf (5.829Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Anastasios John Hart.
Terms of use
Metadata
Show full item recordAbstract
Extrusion-based additive manufacturing, known as fused filament fabrication (FFF), is one the most accessible methods of rapid prototyping, capable of handling a wide variety of engineering thermoplastics. Productivity limitations hinder the further application of FFF to both prototyping and production. An FFF system consists of three synchronized processes: heat conduction into the feedstock, gantry speed, and extrusion of the feedstock by a pinch wheel mechanism. Each one of these processes can become a rate-limiting factor for prints. This work explores resistive joule heating as a method to increase heat transfer into an electrically conductive composite feedstock. This requires usage of an electrically insulating liquefier in order to co-locate both conduction and joule heating. A prototype mechanism was designed and fabricated including an anodized aluminum liquefier capable of printing. This was tested and no significant difference in print times were noted because of a failure in the system due to a current jump around the joule heating section. Although physical tests were not a success, a LabVIEW VI was created for future testing. In addition, modeling was performed to conclude that a 2.85mm PLA filament would be used in the range of 80-100V and 0.2-0.25A with a joule heating length of 0.75cm in the system in order to reach an extrusion rate of 200 cm³ /hr.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019 Cataloged from PDF version of thesis. Includes bibliographical references (page 31).
Date issued
2019Department
Massachusetts Institute of Technology. Department of Mechanical EngineeringPublisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.