MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of techniques to determine temperature coefficient of resistance

Author(s)
Seo, Scott Y.
Thumbnail
Download1130062645-MIT.pdf (4.178Mb)
Alternative title
Development of techniques to determine TCR
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
John G. Brisson.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The focus of this thesis was to develop a simple, repeatable method for characterizing the relationship of different materials' electrical resistance with respect to temperature. A measurement of this relationship is the temperature coefficient of resistance (TCR). Determining the TCR allows a material to be used as a temperature probe and can be utilized in thermal conductivity measurements. The test apparatus and measurement setup proved capable of determining the temperature coefficients of resistance of a copper-alloy wire and a carbon film resistor, giving TCR values of 0.0036 1/K and -0.00014 1/K, which was consistent with their published values. The work of this project aims to aid in the development of a micro-cooling system, which uses polycarbonate for its heat exchanger at cryogenic temperatures. A potential carbon film temperature probe was tested, but was found to be unfit for the intended use as a temperature probe on a polycarbonate surface due to catastrophic failures in the film, most likely caused by the different thermal expansion rates of the carbon and polycarbonate. Further research should be conducted to first find a more suitable temperature probe for polycarbonate and then conduct tests at cryogenic temperatures.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (page 27).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/123270
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.