MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The development and characterization of soft robotic contractile actuators

Author(s)
Hua, Sarah T.
Thumbnail
Download1130587683-MIT.pdf (6.212Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Ellen Roche.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this paper, I describe the development of a soft-robotic myocardium and pneumatic artificial muscles (PAMs) that replicate the physiological motion of the heart. We were able to generate physiological twisting motion in a confined geometry, but additional actuators would be required to generate physiological force for blood ejection. However, McKibben PAMs with thermoplastic polyurethane (TPU) bladders were too bulky and prevented the embedding of additional actuators. Therefore, multiple alternate PAM designs which occupy minimal unpressurized volume were explored. Of the various bladder and mesh pairings for traditional McKibben PAMs, latex bladders with nylon braided mesh proved the most promising. 2D PAMs with zero volume bladders were also developed: 2D McKibben, 2D Pleated, and 2D Cardiac Geometry PAMs. Candidate PAMs were characterized and compared to the physiological linear contraction (14.7%) and force generation (60N) of the heart. The 2D PAMs successfully reduced the volumetric footprint and were able to generate a maximum force of 0.46 N/cm3 (7mm-width five channel 2D McKibben PAM matrix), close to the amount generated by the baseline TPU PAMs (0.53 N/cm3), and up to 10.1% linear contraction (3mm-width nine channel 2D McKibben PAM matrix). However, none of the PAM matrices characterized were able to meet both linear contractile and force generation targets. With more characterization and iteration, the 2D PAMs seem promising for the biomimetic soft-robotic myocardium application.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 51-52).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/123287
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.