Show simple item record

dc.contributor.advisorWolfgang Ketterle.en_US
dc.contributor.authorLi, Junru,Ph. D.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Physics.en_US
dc.date.accessioned2020-01-08T19:31:23Z
dc.date.available2020-01-08T19:31:23Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/123348
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 207-214).en_US
dc.description.abstractUltracold quantum gases provide a clean, isolated, and controllable platform for simulating and characterizing complex physical phenomena. In this thesis, I present several experiments on realizing one-dimensional spin-orbit coupling in ultracold 23Na gases and the creation of a new form of matter with supersolid properties using interacting spin-orbit coupled Bose-Einstein condensates. The first part describes the realization of spin-orbit coupling in optical superlattices which consist of stack of pancakes of imbalanced double-wells. The orbital levels, individual pancakes, in an superlattice potential are used as pseudospin states. Spinorbit coupling was induced by two-photon Raman transition between the pseudospin states, and was experimentally characterized by the spin-dependent momentum structure from this dressing. The realization suppresses heating due to spontaneous emission.en_US
dc.description.abstractThe system is highly miscible, allowing the study of novel phases in interacting spin-orbit coupled systems. Next, spin-orbit coupling was demonstrated by synchronizing a fast periodically modulating magnetic force with the Radio-Frequency (RF) pulses. The modulation effectively dressed the RF photons with tunable momentum. The consequent Doppler shifts for RF transitions were observed as velocity-selective spin flips. The scheme is equivalent to Floquet engineered one-dimensional spin-orbit coupling. Finally, I report experiments on creating a new form of matter, a supersolid, in ultracold quantum gases. An interacting spin-orbit coupled Bose-Einstein condensate in the stripe phase spontaneously breaks two continuous symmetries : the U(1) symmetry, observed as sharp interference peaks in momentum space, and the continuous translational symmetry, observed as a spontaneously formed density modulation. The density modulation is measured and characterized with Bragg scattering.en_US
dc.description.abstractA system spontaneously breaking these two symmetries is a crystal and a superfluid simultaneously, and is considered as a supersolid.en_US
dc.description.statementofresponsibilityby Junru Li.en_US
dc.format.extent214 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectPhysics.en_US
dc.titleSpin-orbit coupling and supersolidity in ultracold quantum gasesen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.identifier.oclc1132797177en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Physicsen_US
dspace.imported2020-01-08T19:31:21Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentPhysen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record