Show simple item record

dc.contributor.advisorMatteo Bucci.en_US
dc.contributor.authorAkinsulire, Olorunsola J.Jr.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Nuclear Science and Engineering.en_US
dc.date.accessioned2020-01-08T19:33:42Z
dc.date.available2020-01-08T19:33:42Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/123362
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 57-59).en_US
dc.description.abstractThis work looks into the feasibility of utilizing nanotechnology in order to improve the performance of pressurized water reactors (PWRs) in the nuclear industry. Through growing zinc oxide nanowires (ZnO NW) on the surface of zircaloy, which clads the uranium oxide fuel, the project aims to increase the heat flux limit, i.e., the critical heat flux (CHF), resulting in a boiling crisis. That allows for improvement on the safety margins and operation at higher power. The exact procedure for growing the nanowires will be delineated such that the results can be replicated exactly. A variety of ZnO NW structures will be fabricated based on the characteristic size of the features and characteristic spacing among the structures. This goal will be achieved by controlling the fabrication steps at various stages. Utilizing the Scanning Electron Microscope (SEM) and Focused Ion Beam (FIB), we will be able to geometrically describe the properties of the nanowires. Heat transfer performance of ZnO nanostructured surfaces will be characterized through flow boiling at atmospheric pressure and under pressurized conditions, using state-of-the-art diagnostic systems consisting of high-speed video and infrared (IR) thermometry. The post processing of the IR data will allow us to determine spatial and temporal evolution of heat flux and temperature across the heated surface to the point of CHF. This will all culminate into a numerical result termed the enhancement, which will describe the improvement from modern standards. These results will provide useful insights into designing the future generation nuclear fuel claddings as well as economic, feasible, and scalable nanofabrication techniques.en_US
dc.description.statementofresponsibilityby Olorunsola J. Akinsulire, Jr.en_US
dc.format.extent63 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectNuclear Science and Engineering.en_US
dc.titleThe fabrication of nano-scale engineered surfaces to investigate the enhancement of boiling heat transfer and CHF in nuclear reactorsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.identifier.oclc1134768353en_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Nuclear Science and Engineeringen_US
dspace.imported2020-01-08T19:33:38Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentNucEngen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record