MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ultracold neutron storage simulation using the Kassiopeia software package

Author(s)
Bogorad, Zachary.
Thumbnail
Download1132720311-MIT.pdf (3.952Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Advisor
Joseph A. Formaggio.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The Kassiopeia software package was originally developed to simulate electromagnetic fields and charged particle trajectories for neutrino mass measurement experiments. Recent additions to Kassiopeia also allow it to simulate neutral particle trajectories in magnetic fields based on their magnetic moments. Two different methods were implemented: an exact method that can work for arbitrary fields and an adiabatic method that is limited to slowly-varying fields but is much faster for large precession frequencies. Additional interactions to simulate reflection of ultracold neutrons from material walls and to allow spin-flip pulses were also added. These tools were used to simulate neutron precession in the Paul Scherrer Institute's neutron electric dipole moment experiment and predict the values of the longitudinal and transverse relaxation times as well as the trapping lifetime. All three parameters are found to closely match the experimentally determined values when simulated with both the exact and adiabatic methods, confirming that Kassiopeia is able to accurately simulate neutral particles. This opens the door for future uses of Kassiopeia to prototype the next generation of atomic traps and ultracold neutron experiments.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Physics, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 59-62).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/123394
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.