Show simple item record

dc.contributor.advisorPablo Jarillo-Herrero.en_US
dc.contributor.authorYang, Yafang,Ph. D.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Physics.en_US
dc.date.accessioned2020-01-08T19:41:36Z
dc.date.available2020-01-08T19:41:36Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/123397
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 149-163).en_US
dc.description.abstractAtomically layered transitional metal dichalcogenides (TMDs) manifest many fascinating properties such as atomic-scale thickness, favorable mechanical, electronic and optoelectronic properties and strong spin-orbit coupling. In terms of electronic properties, the TMDs range from insulating or semiconducting to metallic or semi-metallic. Some of them also exhibit exotic electronic phases such as charge density waves and superconductivity. Recent advances in nano-materials characterization and device fabrication, in particular, fabrication of high quality van der Waals heterostructures, have boosted studies on two-dimensional layers of thin TMDs for purpose of both fundamental research and industrial applications. In this thesis, I present a series of experiments investigating electronic and optoelectronic properties of semiconducting TMDs MoS2 and WSe2. I also demonstrate technical advances in fabrication of van der Waals heterostructures, which enables high-quality encapsulated thin TMDs devices with ionic liquid introduced as electrolyte. I further show that phase transitions in superconducting TMDs such as 2H-TaS2 can be greatly impacted by dimensionality reduction. A substantial enhancement of superconducting T, and a suppression of the CDW transition are observed in 2H-TaS2 in the 2D limit. At last, I present a machine learning algorithm to realize pixel-wise classification on laboratory acquired images of various 2D materials, which might open up new opportunities for full automation of nano-material search and device fabrication.en_US
dc.description.statementofresponsibilityby Yafang Yang.en_US
dc.format.extent163 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectPhysics.en_US
dc.titleNovel transport behavior in two-dimensional semiconducting and superconducting transitional metal dichalcogenidesen_US
dc.title.alternativeNovel transport behavior in 2-D semiconducting and superconducting transitional metal dichalcogenidesen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.identifier.oclc1133586134en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Physicsen_US
dspace.imported2020-01-08T19:41:35Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentPhysen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record