dc.contributor.advisor | Christoph E.M. Paus. | en_US |
dc.contributor.author | Allen, Brandon Leigh. | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Physics. | en_US |
dc.date.accessioned | 2020-01-08T19:43:25Z | |
dc.date.available | 2020-01-08T19:43:25Z | |
dc.date.copyright | 2019 | en_US |
dc.date.issued | 2019 | en_US |
dc.identifier.uri | https://hdl.handle.net/1721.1/123413 | |
dc.description | Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2019 | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 157-165). | en_US |
dc.description.abstract | In this thesis, we present a search for dark matter in final states containing a high- PT photon and large missing transverse momentum in proton-proton collisions at [square root of s] = 13 TeV using data collected by the Compact Muon Solenoid.(CMS) experiment at the CERN Large Hadron Collider (LHC) corresponding to an integrated luminosity of 35.9 inverse femtobarns. The main advances in experimental technique compared to previous searches in this final state are the use of data-driven control regions to constrain the main irreducible backgrounds from Z( --> vv̄ + [gamma] and W( --> [iota]v)+ [gamma] production and an in-depth study of the unique anomolous detector signatures that result in backgrounds due to non-collision processes. With these improvements, we have the most robust analysis of this kind presented to date. No deviations from the predictions of the standard model are observed. The results are interpreted in the context of dark matter production and limits on new physics parameters are calculated at 95% confidence level. We focus on two simplified dark matter production models where new vector and axial mediators couple a new dark dirac fermion to the Standard Model quarks. These models are chosen as they cover a large class of WIMP-like dark matter particles that show up in many types of more complete new physics models. For the two models considered, the observed (expected) lower limits on the masses of the new mediators are 950 (1150) GeV for a dark matter particle of a mass of 1 GeV. | en_US |
dc.description.statementofresponsibility | by Brandon Leigh Allen. | en_US |
dc.format.extent | 165 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Physics. | en_US |
dc.title | Searching for dark matter with the CMS detector in proton-proton collisions containing a single high-pT photon and large E miss/t | en_US |
dc.type | Thesis | en_US |
dc.description.degree | Ph. D. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Physics | en_US |
dc.identifier.oclc | 1134391869 | en_US |
dc.description.collection | Ph.D. Massachusetts Institute of Technology, Department of Physics | en_US |
dspace.imported | 2020-01-08T19:43:25Z | en_US |
mit.thesis.degree | Doctoral | en_US |
mit.thesis.department | Phys | en_US |