Show simple item record

dc.contributor.authorCastillo, Carlos
dc.contributor.authorEl-Haddad, Mohammed
dc.contributor.authorPfeffer, Jürgen
dc.contributor.authorStempeck, Matt
dc.date.accessioned2020-01-16T17:03:43Z
dc.date.available2020-01-16T17:03:43Z
dc.date.issued2014-02-15
dc.identifier.urihttps://hdl.handle.net/1721.1/123457
dc.description.abstractThis paper presents a study of the life cycle of news articles posted online. We describe the interplay between website visitation patterns and social media reactions to news content. We show that we can use this hybrid observation method to characterize distinct classes of articles. We also find that social media reactions can help predict future visitation patterns early and accurately.We validate our methods using qualitative analysis as well as quantitative analysis on data from a large inter-national news network, for a set of articles generating more than 3,000,000 visits and 200,000 social media re-actions. We show that it is possible to model accurately the overall traffic articles will ultimately receive by ob-serving the first ten to twenty minutes of social media reactions. Achieving the same prediction accuracy with visits alone would require to wait for three hours of data.We also describe significant improvements on the accuracy of the early prediction of shelf-life for news stories.en_US
dc.language.isoenen_US
dc.publisherCSCW '14: Proceedings of the 17th ACM conference on Computer supported cooperative work & social computingen_US
dc.subjectWeb analytics; predictive web analytics; online news; Information Systems Applicationsen_US
dc.titleCharacterizing the Life Cycle of Online News StoriesUsing Social Media Reactionsen_US
dc.typePresentationen_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Civic Media


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record